Tag: Mars Reconnaissance Orbiter

Science & Space Highlights 2013

Space isn’t remote at all. It’s only an hour’s drive away if your car could go straight upwards.
– Sir Fred Hoyle

Science & Space Highlights 2013

My favourite daily newspaper (excellent as it is free too 🙂 ) is The Metro which I read on weekdays on my early morning commute to work.  Ben Gilliland produces an interesting , humorous & easy to understand updates and topics in the science world. Here are the highlights of 2013.

IT IS the start of a new year; 2013 is behind us and all eyes are looking towards the year ahead. It is a time to cast out the old and welcome in the new. But before we push 2013 into our collective wheelie bins to fester with turkey bones, congealed gravy and unrealised dreams, let us take one final look at the year on whose shoulders 2014 will stand. Like one of those chocolate selection boxes that are ubiquitous to the festive season, 2013 was a year packed with tasty morsels of sciencey goodness. We have reviewed the pictorial insert and (avoiding the whisky liqueur centres) selected a few of our favourites… [*The decision to run with a 2013 retrospective was in no way influenced by the author’s desire for two weeks off during the Christmas period. The fact that this piece could be prepared in advance is entirely coincidental]

  Thanks to Nasa’s Kepler space observatory, 2013 was a bumper year for exoplanets. On January 2, a study by astronomers at the California Institute of Technology (Caltech) revealed that the Milky Way contains at least one planet for every star – meaning that our galaxy is home to at least 100-400 billion exoplanets (although there is likely to be many more). Just five days later, another report, from astronomers at the Harvard-Smithsonian Center for Astrophysics, estimated that there are ‘at least 17 billion’ Earth-sized exoplanets in the Milky Way. On November 4, a study from the University of California (also based on Kepler data) reported that there could be as many as 40 billion Earth-sized planets orbiting within the ‘habitable zone’ of their host stars (the region around a star where conditions make the existence of liquid water possible). Of that number, the report estimated that as many as 11billion may be orbiting Sun-like stars – with the nearest such planet located just 12 light-years away.

Launched in 2009 along with the Herschel space telescope, the European Space Agency’s Planck cosmology probe was designed to map the Universe’s first light – the radiation after-glow of the Big Bang. On March 21, the mission’s all-sky map of this a Space was released. The exquisitely-detailed map revealed the tiny temperature variations that were present when the Universe was just 380,000 years old. Although they vary by less than a hundred millionth of a degree, these fluctuations in the density and temperature of the young Universe would form the seeds of the stars and galaxies that inhabit the cosmos today. Planck’s results confirmed many aspects of ‘Big Bang’ theory – including so-called ‘cosmic inflation’ (a period of exponential expansion thought to have occurred in the first fraction of a second of the Universe’s existence). It revealed the Universe to be slightly older than previously though (by about 80million years) and that it contains a little less of the mysterious dark energy (68.3%) thought to be driving the expansion of the cosmos and a little more of the ninja-like dark matter (26.8%) that interacts with the cosmos through gravity alone and a little more of the ordinary matter (4.9%) that makes up you, me and the stars and planets.
Farewell Planck

On October 3, after more than four years of sky mapping, the last of Planck’s instruments ran out the helium coolant they needed to operate. Six days later, the craft was moved out its operating position and placed into a ‘graveyard orbit’ around the Sun. Finally, on October 21, Planck was given the command to power down for good.

On April 29, another iconic ESA spacecraft, the Herschel Space Observatory, exhausted the last of its 2,300-litre supply of liquid helium coolant – marking the end of more than three years of stunning observations. Designed to see the Universe in the dust-piercing far-infrared part of the electromagnetic spectrum, Herschel gave us stunning images of the intricate networks of gas and dust from which stars are born. It identified star-forming regions in the most distant galaxies – revealing that, even in the early Universe, stars were formed at prodigious rates. In all, Herschel made over 35,000 scientific observations and collected more that 25,000 hours-worth of science data.

If you’ve been following the progress of Nasa’s veteran space probe, Voyager 1, you may have noticed that it seems to have ‘left the Solar System’ more than once. In September, Nasa announced that, on August 25, the craft had at last (for certain this time) become the first man-made object to leave the Solar System behind and pass into interstellar space. Launched in 1977 for a ‘grand tour’ of the planets, Voyager 1 covered an astonishing 19 billion km (about 121 Astronomical Units, or AU) of space before it passed beyond the reach of the solar wind and departed the Solar System. Of course, another definition would put the edge of the Solar System at the point where the Sun’s gravitational influence ends – a distance of about 63,200 AU – meaning Voyager won’t truly leave for another 17,000 years or so. If mankind is ever going to colonise Mars, we’ll need a steady supply of water.

On September 26, Nasa announced that their Curiosity rover had detected ‘abundant, easily accessible’ water in the Martian soil. The robotic explorer had found that the red surface of Mars contains about two per cent water by weight – meaning that future colonists could (in theory) extract about a litre of water from every cubic foot of Martian dirt. Then, in December, a study of images taken by Nasa‘s Mars Reconnaissance Orbiter was released that hinted that there might still be liquid water flowing near the Red Planet’s equator. The images showed dark lines, called ‘recurring slope lineae’, which might be formed when water ice at high altitudes melted during the Martian summer and flowed down hill.

The Sun powers our existence here on Earth through the energy released by nuclear fusion in its core and it has long been a dream that we will one day recreate this process here on Earth. On October 7, scientists at the National Ignition Facility in California announced that they had taken a significant step towards that dream. Using a technique called ‘Inertial Confinement Fusion’, they zapped a tiny pellet of hydrogen fuel with the combined might of 192 laser beams – heating it 100 million degrees and initiating fusion. Significantly, for the first time, the reaction liberated more energy than was needed to initiate it. The amount of energy was tiny, but it showed that cheap, clean, fusion energy might one day be a reality.

Neutrinos are virtually massless particles that flood the cosmos, but have no electric charge so pass through the Universe (and through stars, planet and you) oblivious to, and unaffected by their surroundings. On November 22, scientists at the IceCube Neutrino Observatory, an ice-entombed telescope in Antarctica, said they had detected high-energy neutrinos from beyond the Solar System for the first time. The neutrino’s ability to pass through space unsullied by their surroundings means that, unlike the electromagnetic radiation most telescopes look for, none of the information they carry is lost or corrupted. The discovery has been hailed by astronomers as opening up a ‘new era of astronomy’.

A mission that could revolutionise our knowledge about our home galaxy was launched on December 19. One of the most ambitious space-charting missions ever conceived, ESA’s Gaia space craft will map the precise location, composition, brightness and age of a billion stars. It’s near-billion pixel camera (the most powerful ever flown into space) will create an ultra-precise 3D map of our corner of the Milky Way. By pinpointing the position and motions of the stars, the map can be used to chart how the Milky Way is evolving (by fast-forwarding their motions) and how it first evolved (by rewinding them).

%d bloggers like this: